skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meng-Papaxanthos, Laetitia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Pfam protein families database is a comprehensive collection of protein domains and families used for genome annotation and protein structure and function analysis (https://www.ebi.ac.uk/interpro/). This update describes major developments in Pfam since 2020, including decommissioning the Pfam website and integration with InterPro, harmonization with the ECOD structural classification, and expanded curation of metagenomic, microprotein and repeat-containing families. We highlight how AlphaFold structure predictions are being leveraged to refine domain boundaries and identify new domains. New families discovered through large-scale sequence similarity analysis of AlphaFold models are described. We also detail the development of Pfam-N, which uses deep learning to expand family coverage, achieving an 8.8% increase in UniProtKB coverage compared to standard Pfam. We discuss plans for more frequent Pfam releases integrated with InterPro and the potential for artificial intelligence to further assist curation. Despite recent advances, many protein families remain to be classified, and Pfam continues working toward comprehensive coverage of the protein universe. 
    more » « less